

Baltic DB&IS'2022, 5 July 2022

Leading-edge, open-source process mining

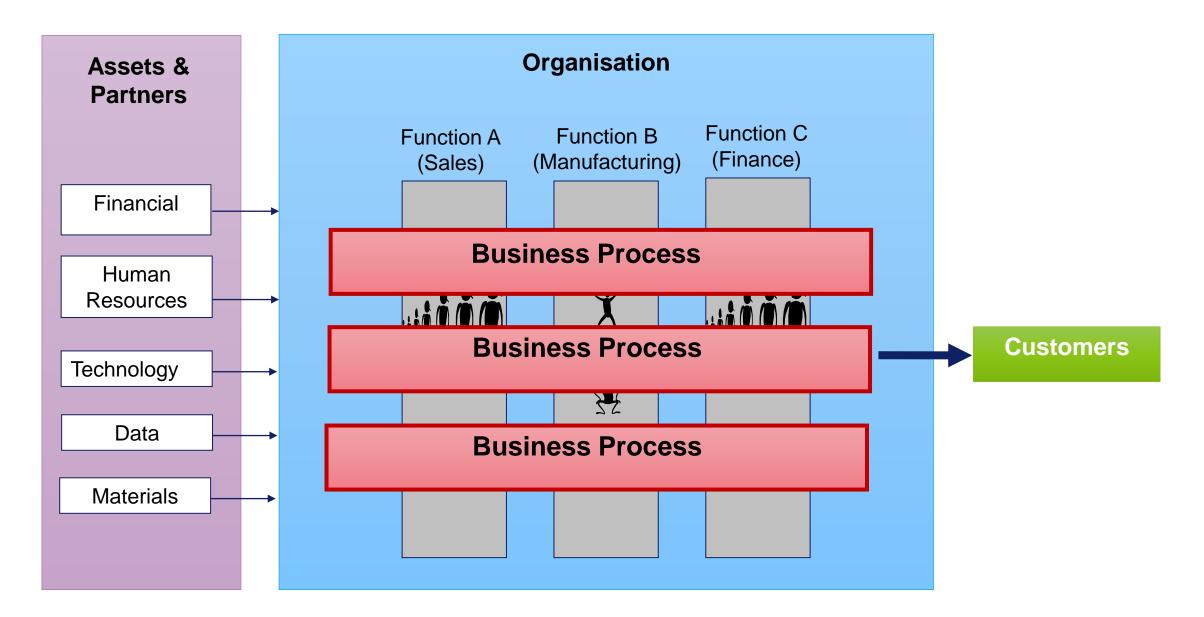
Accurate and Reliable What-If Analysis of Business Processes: Is it Achievable?

Marlon Dumas

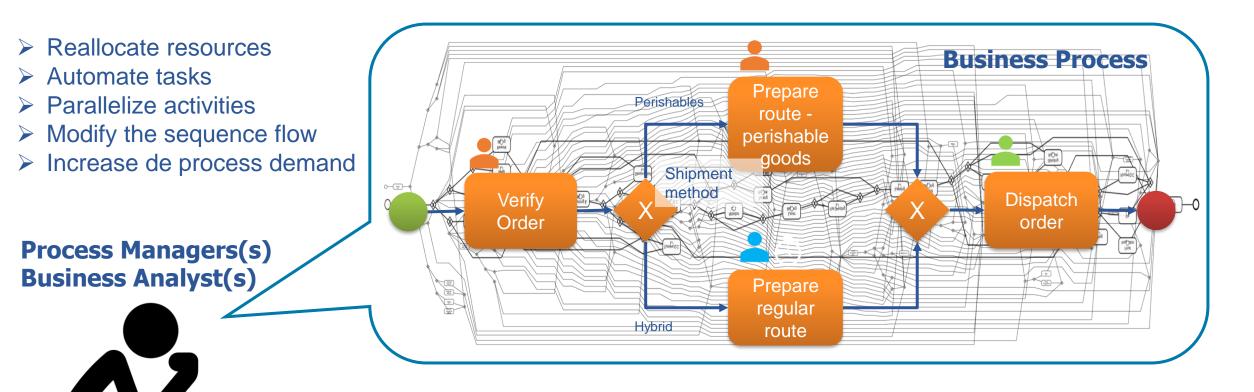
Professor @ University of Tartu Co-founder @ Apromore

With contributions by Manuel Camargo and Oscar González-Rojas

Business processes

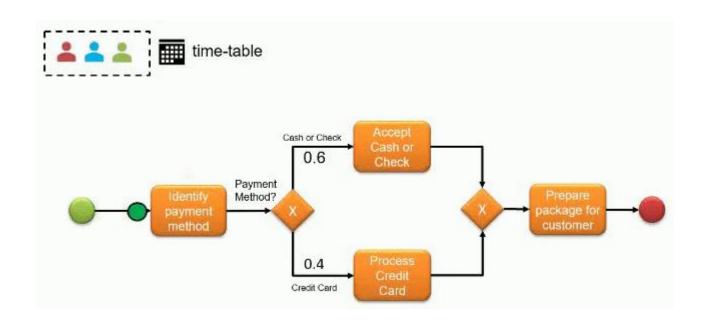


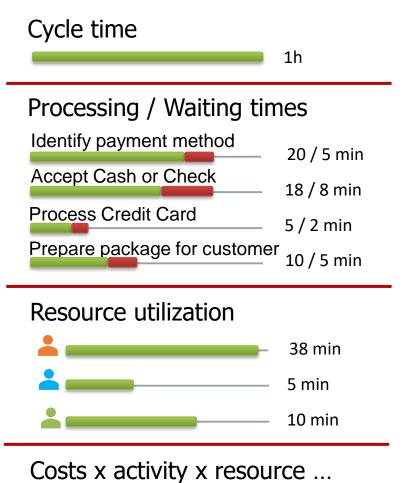
"What-If" Business Process Analysis



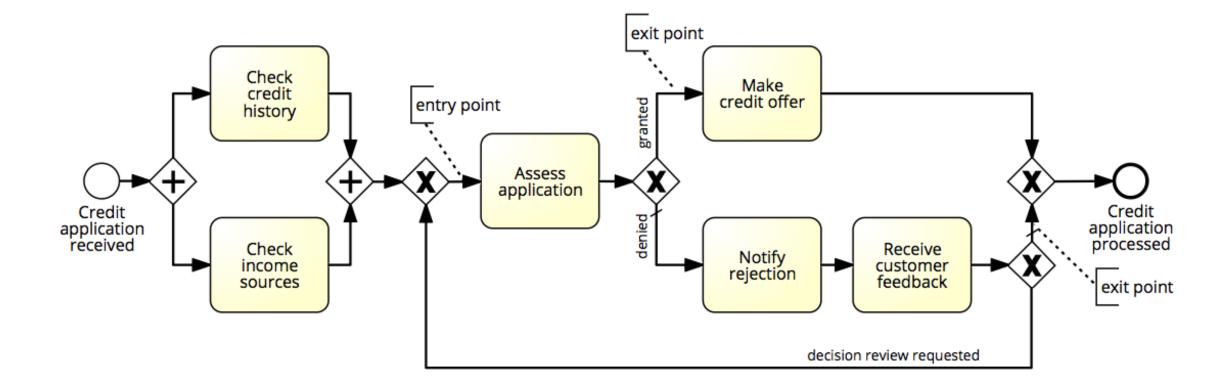
How to determine if a given process change would improve a business process, and by how much?

The Traditional Answer: Business Process Simulation

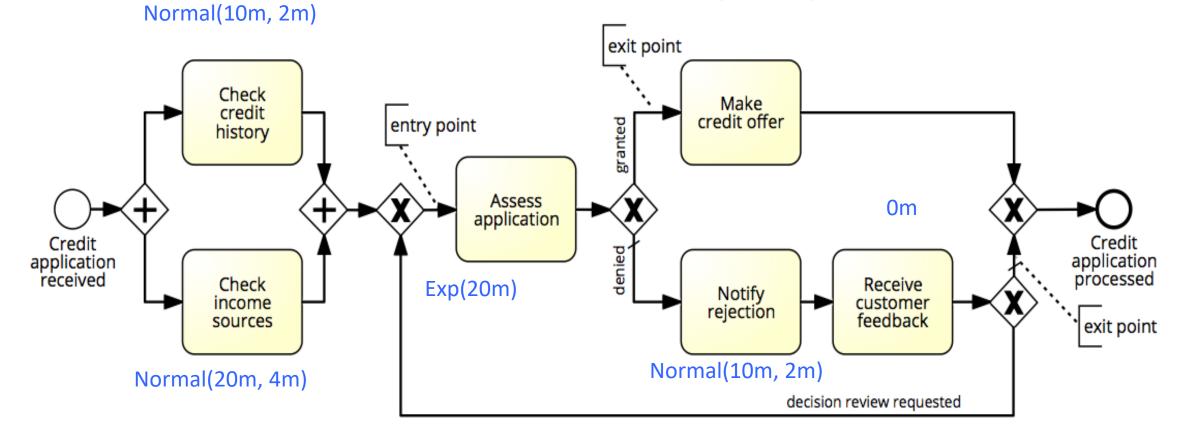




Starting Point: Business Process Model



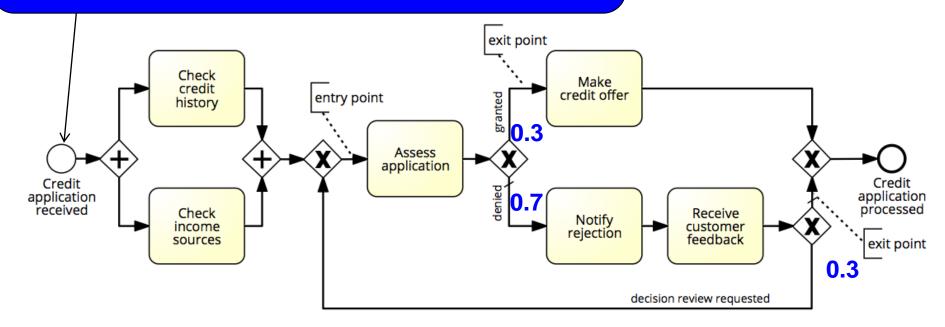
1. Specify Processing Times



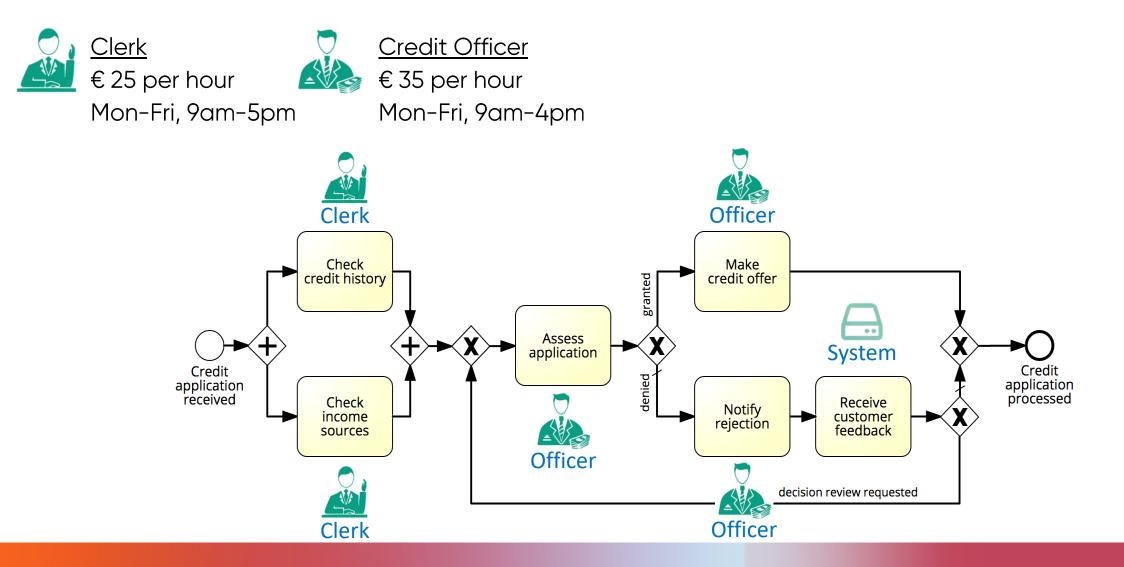
Normal(10m, 2m)

2. Specify arrival process & branching probabilities

Arrival rate = 2 applications per hour Inter-arrival time = 0.5 hour Negative exponential distribution From Monday-Friday, 9am-5pm



3. Specify resource pools & task-to-pool assignment



Business Process Simulation: Assumptions

The process model is authoritative (always followed to the letter)

- No deviations
- No workarounds

The simulation parameters accurately reflect reality

• ...whereas in reality, they are often guesstimates

A resource only works on one task instance at a time / a task is performed by one resource

No multi-tasking / no multi-resource tasks (teamwork)

Resources have robotic behavior (eager resources consume work items in FIFO mode)

- No batching
- No tiredness effects, no interruptions, no distractions beyond "stochastic" ones

Undifferentiated resources

• Every resource in a pool has the same performance as others

No time-sharing outside the simulated process

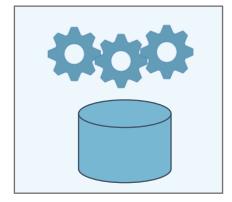
Resources fully dedicated to one process

End Result

Business process simulations based on incomplete models, guesstimates, and simplifying assumptions are not faithful
→ adoption of business process simulation is disappointing

Data to the Rescue!

Enterprise System (CRM, ERP, ...)



Case ID	Timestamp	Activity	Resource	Loan goal	Requested amt	Offered amt
C001	18-10-2016	Check completeness	Sue	Mortgage	100 000	-
C001	19-10-2016	Check credit history	Sue	Mortgage	100 000	-
C001	19-10-2016	Calculate risk score	Bob	Mortgage	100 000	-
C001	20-10-2016	Make offer	Mike	Mortgage	100 000	70 000
C001	25-10-2016	Make offer	Mike	Mortgage	100 000	80 000
C002	20-10-2016	Check completeness	Sue	Car	15 000	-
C002	20-10-2016	Check credit history	Sue	Car	15 000	-
C002	22-10-2016	Calculate risk score	Elsa	Car	15 000	-
C002	24-10-2016	Reject application	Elsa	Car	15 000	-
C003	02-11-2016	Check completeness	Maria	Mortgage	30 000	-
C003	04-11-2016	Ask for additional data	Maria	Mortgage	30 000	-
C003	10-11-2016	Check credit history	Maria	Mortgage	30 000	-

Event Log

Problem Statement

Given

Predict ~

one or more business processes, for which we have:

- one or more process specifications and/or
- event logs generated by the execution of the processes on top of one or more information systems.

 one or more process performance measures of interest (e.g. cycle time, resource cost)

• One or more changes to the process (interventions)

• Predict the values of the process performance measures after the given interventions.

Non-Functional Requirements

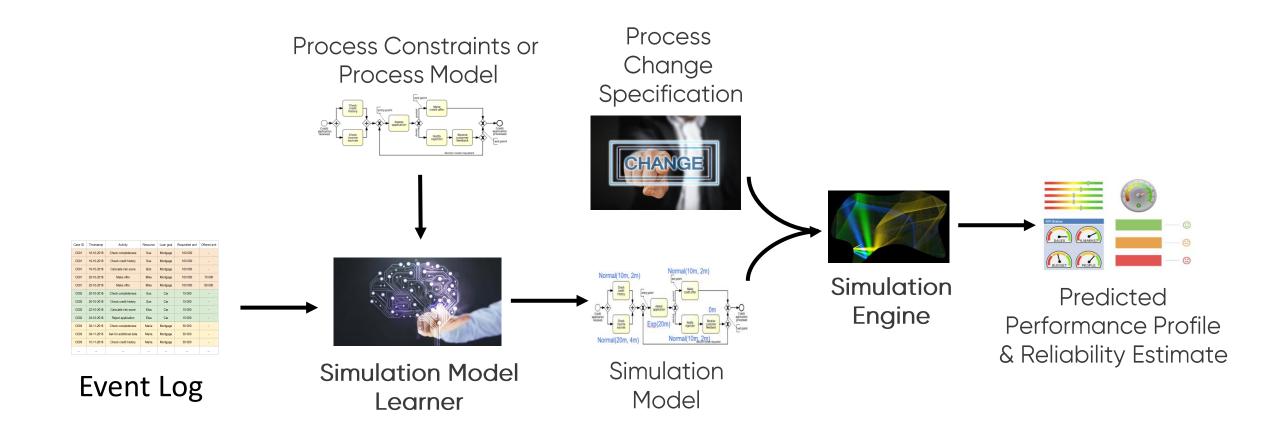
Predictions accurate.

Accuracy may be measured e.g. via an error between the predicted and the actual performance measures after intervention.

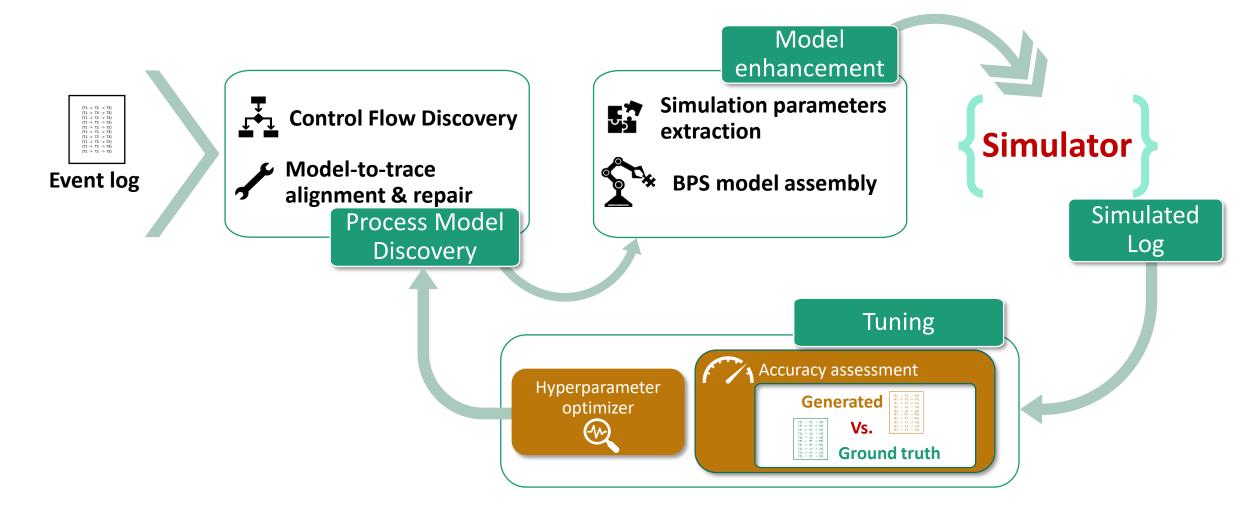
Predictions should be accompanied by a reliability estimate. In most cases, the reliability is high.

Reliability could be captured, e.g. by confidence intervals

Data-Driven Business Process Simulation

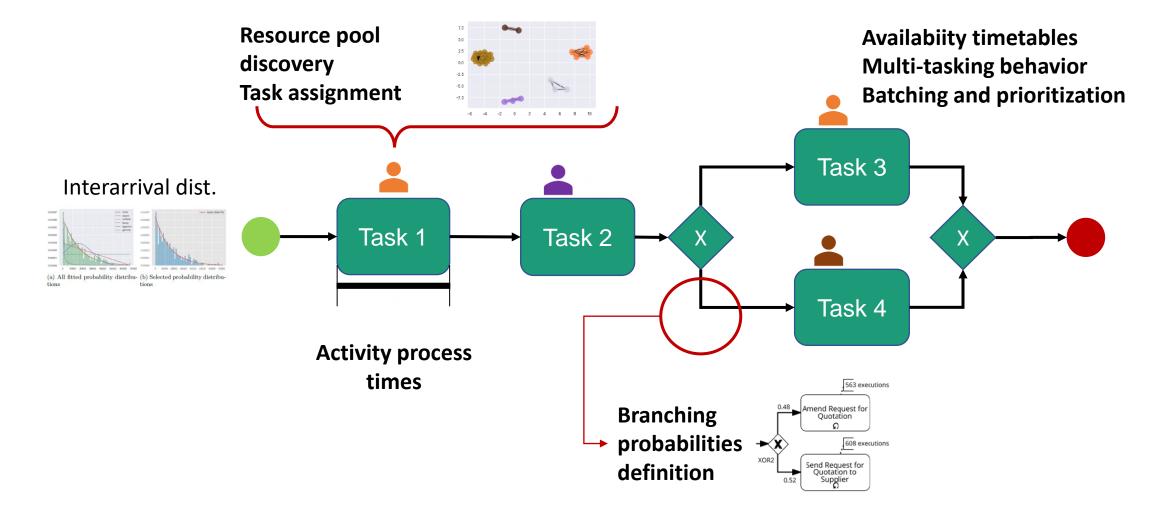


SIMOD: Simulation Model Discovery from Event Logs

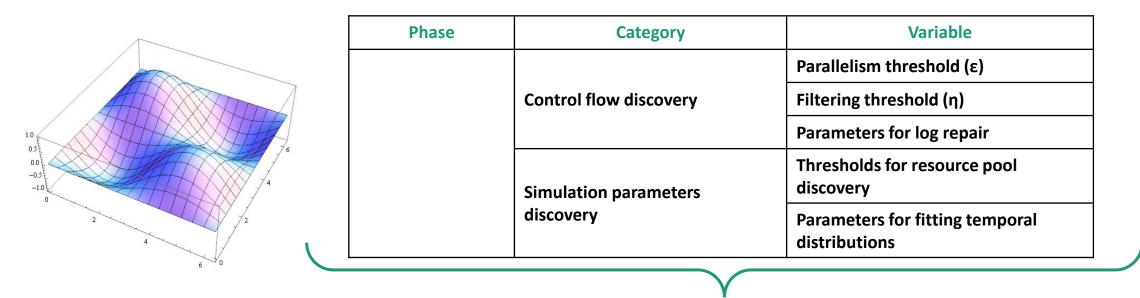


https://github.com/AutomatedProcessImprovement/Simod

Simulation Parameters Discovery

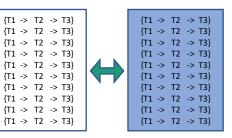


Hyper-Parameter Tuning



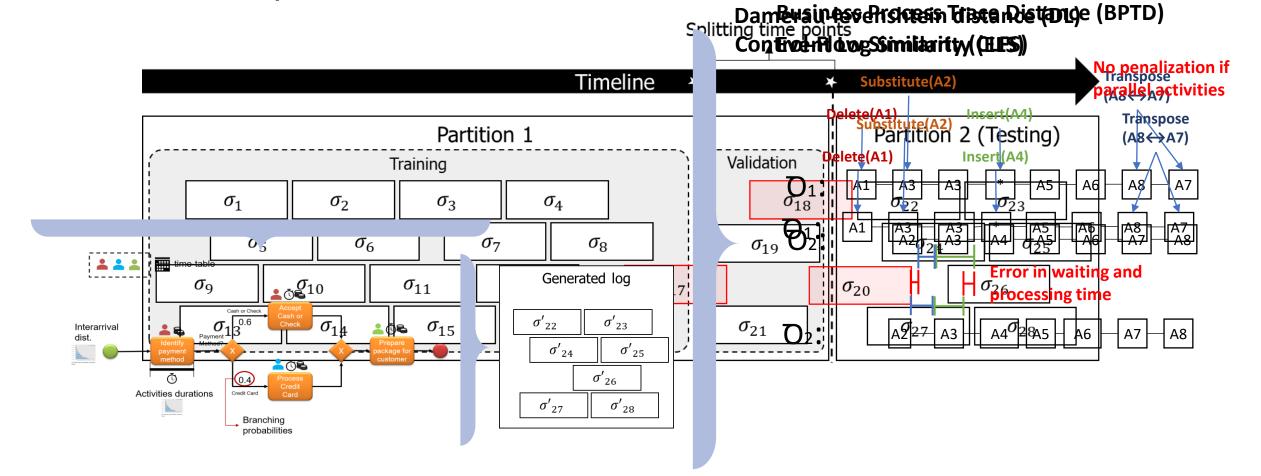
Optimal alignment of complete bipartite graph Test Log x Simulation Log weighted by Damerau-Levenshtein (DL) distance, with penalty for temporal mismatch

Test Fold of Event-Log



Simulated Log

SIMOD: Empirical Evaluation Procedure



SIMOD: Evaluation Results

Dataset	Control-Flow Similarity (string-edit distance)	Temporal Similarity (timed-string edit distance)	
Call centre	0.37	0.41	
Pharmacy customer service	0.29	0.30	
Purchase-to-Pay	0.55	0.57	
Make-to-order manufacturing	0.65	0.69	
Academic credentials recognition	0.32	0.29	
Insurance claims handling	0.39	0.43	
Loan Origination	0.41	0.42	

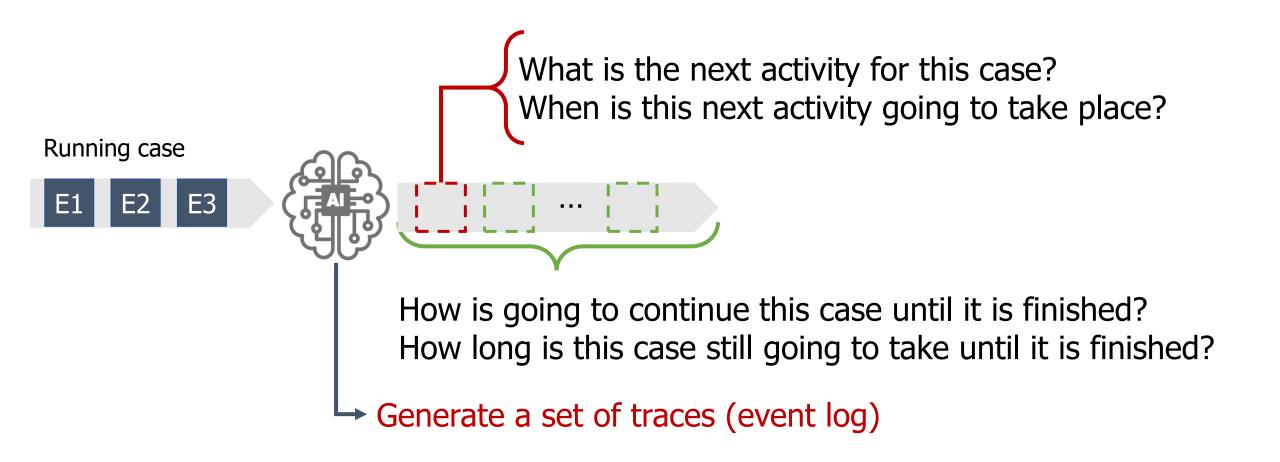
<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC</u>

- Discover and add batching behavior to simulation models
- .. prioritization
- ... timers and external factors (not explicit in the data)
- etc.

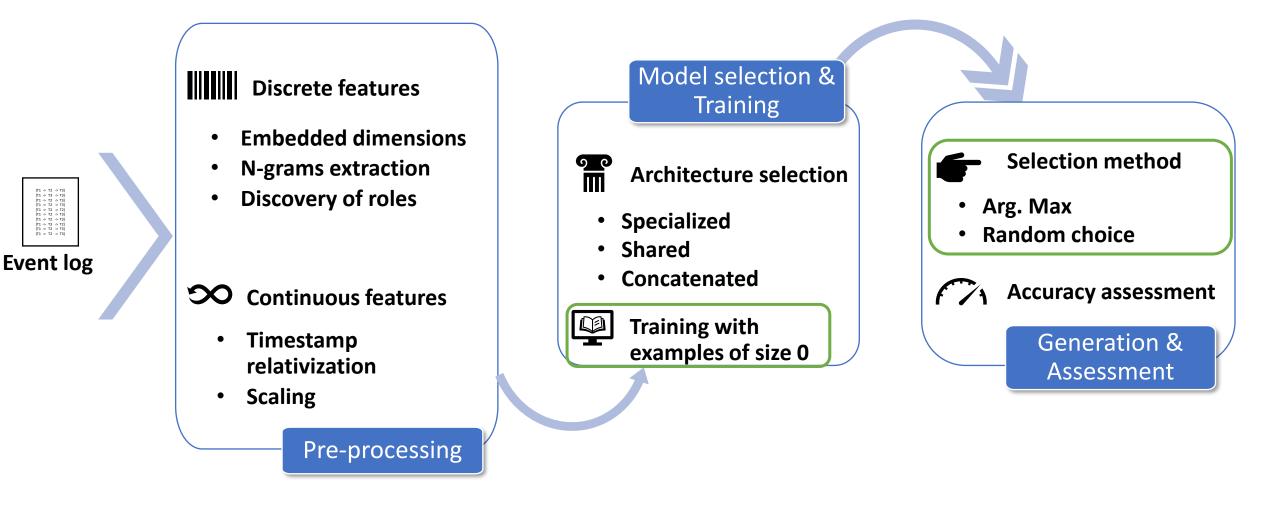
Or perhaps we should look for another paradigm....

We can try to fill in the glass

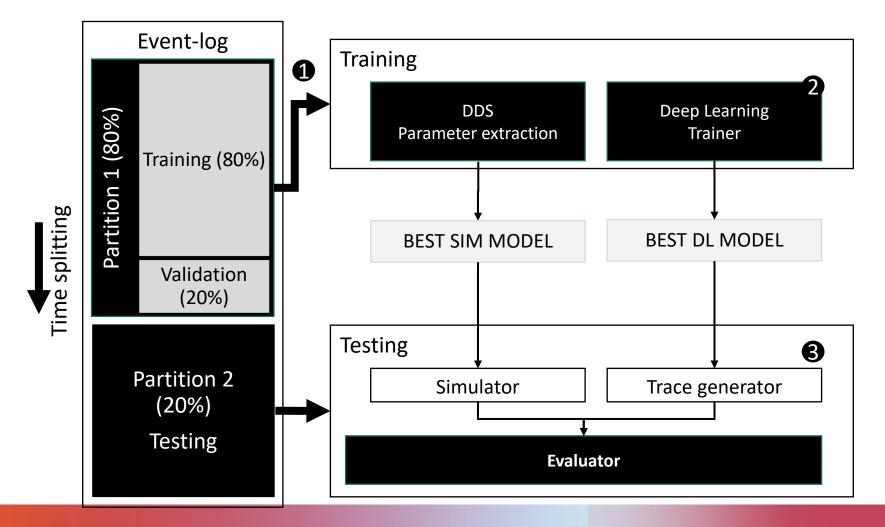
Generative Deep Learning Models of Business Processes



Generative Deep Learning Models of Business Processes



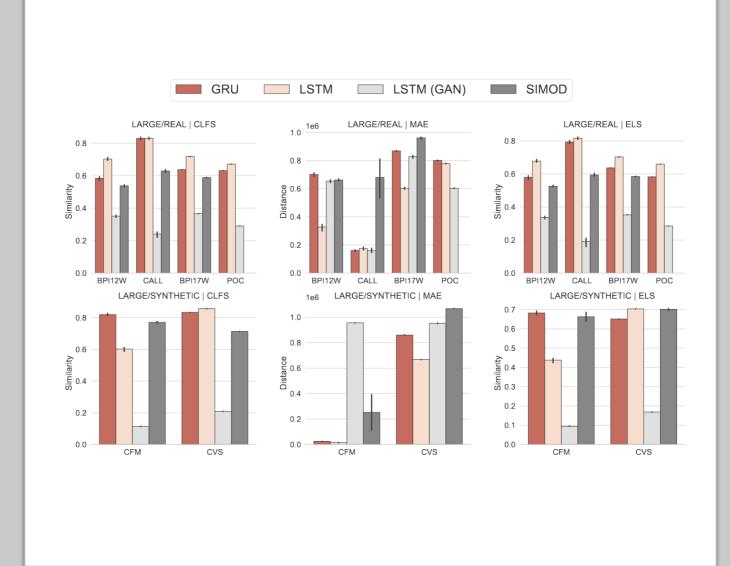
Data-Driven Simulation (DDL) vs Deep Learning (DL) Generative Models



Evaluation Results

- DDS Models (SIMOD) and DL models have comparable performance w.r.t. control-flow similarity (CLFS)
- DL models sometimes clearly outperform DDS models on temporal metrics (MAE, ELS)

Could we combine them?



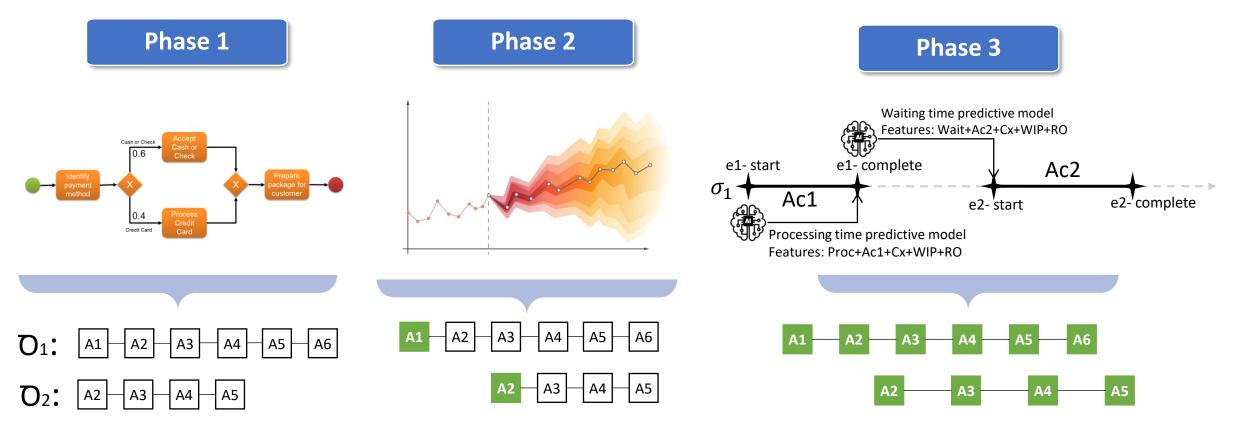
Data-Driven (Discrete Event) Simulation

- May take as input a process specification (helps with interpretability)
- Takes into account resource constraints
- Models the case creation process via a probability distribution
- Assumes undifferentiated resources with robotic behavior
- Models resource availability as calendars (possibly discovered from historical data)
- Branches are selected using branching probabilities
- Provides a natural mechanism for capturing the effect of changes to the process

Generative Deep Learning Methods

- No interpretable process specification
- Does not explicitly take into account resource constraints
- Learns the case arrival process from data (univariate or multivariate models)
- May capture differentiated resources and robotic behavior
- Models resource availability via neural networks that may capture non-linear availability functions
- Branching behavior modeled via neural networks (e.g. LSTM) that may capture complex relations
- Does not have a mechanism for capturing the effect of changes to the process

DeepSimulator: Hybrid Learning of Business Process Simulation Models

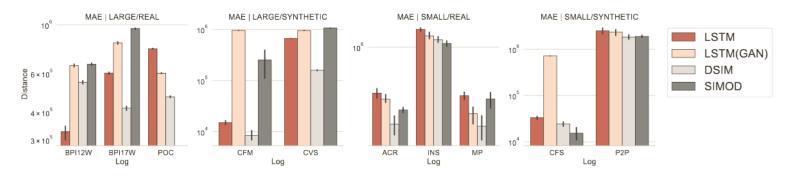


Discovering a process model to generate traces

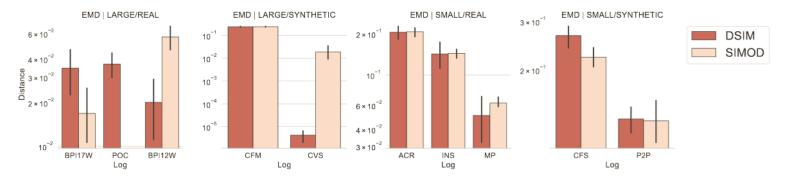
Learning a time series generator to determine when each trace starts

Deep-learning the processing time and waiting time of each activity in a given trace

EXP1 – Replicating "As-is" behavior



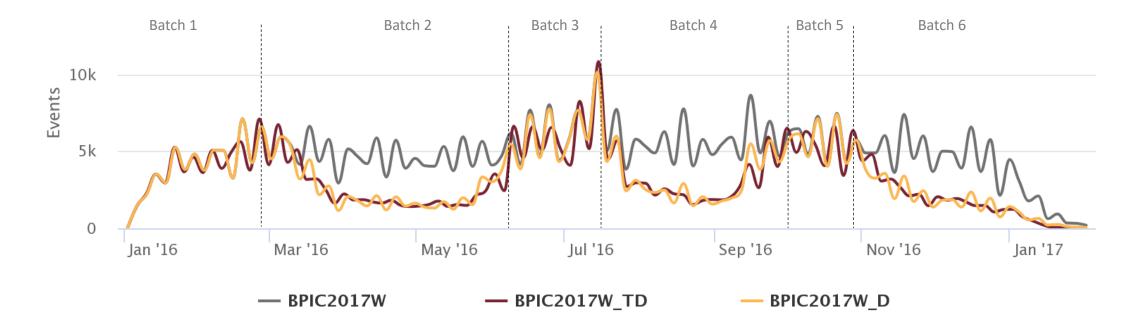
(a) Cycle time MAE results



(b) Earth Mover's Distance (EMD) results

Deep Simulation generally outperforms classical DDS in temporal measures

EXP2 – What-If the number of cases increases?



 DeepSimulator can better estimate the impact of changes in the demand in settings where such changes have been previously observed in the data.

EXP3 – What-If We Add an Never-Before-Seen Activity

Scenario 1	Log	MAE		EMD		DTW	
		SIMOD	DSIM	SIMOD	DSIM	SIMOD	DSIM
	Version 1						
	BPI17W	971151	<u>417572</u>	<u>0.02222</u>	0.03593	<u>3185</u>	3647
	BPI12W	660211	<u>534341</u>	0.11295	<u>0.04853</u>	515	<u>458</u>
	CVS	1489252	<u>467572</u>	0.03213	<u>0.00001</u>	3380	<u>849</u>
	Version 2						
	BPI17W	895524	<u>290980</u>	0.06438	<u>0.03218</u>	4528	<u>3431</u>
	BPT12W	550266	<u>524995</u>	0.25888	<u>0.22003</u>	726	<u>507</u>
	CVS	540112	<u>246159</u>	0.15674	<u>0.05708</u>	2453	<u>1967</u>
Scenario 2	Log	MAE		RMSE		SMAPE	
		AS-IS	WHAT-IF	AS-IS	WHAT-IF	AS-IS	WHAT-IF
	CFM	<u>7155</u>	17546	<u>22006</u>	33137	<u>0.15629</u>	0.28762
	CVS	<u>283061</u>	1040344	<u>357717</u>	1052255	<u>0.31972</u>	1.84601

 The accuracy of DeepSimulator degrades when evaluated in a previously unobserved scenario (new task is added to the process)

Wrap-Up

- There's a long road ahead to constructing accurate and reliable simulation models from event logs
- Combination of deep learning techniques & simulation promising, but need to be further researched to become practically usable for whatif analysis
 - Extensions needed to support a wide range of interventions / changes
 - Extensions needed to provide reliability estimates (for what-if analysis)
 - More validation in large-scale scenarios

References

Limitations and pitfalls of traditional BP simulation

• van der Aalst: Business Process Simulation Survival Guide. In *Handbook on Business Process Management* Vol. 1, 2015, 337-370

Data-Driven Simulation (discovering simulation models from logs)

- Rozinat et al. *Discovering simulation models*. Inf. Syst. 34(3): 305-327 (2009)
- Martin et al. The Use of Process Mining in Business Process Simulation Model Construction -Structuring the Field. Bus. Inf. Syst. Eng. 58(1): 73-87
- Camargo et al. Automated discovery of business process simulation models from event logs. Decis. Support Syst. 134:113284, 2020 <u>https://arxiv.org/abs/2009.03567</u>
- Pourbafrani et al. Extracting Process Features from Event Logs to Learn Coarse-Grained Simulation Models. CAiSE 2021: 125-140

Data-Driven Simulation and Deep Learning

- Camargo et al. *Discovering Generative Models from Event Logs: Data-driven Simulation vs Deep Learning*, PeerJ Computer Science, 7: e577, 2021 <u>https://peerj.com/articles/cs-577/</u>
- Camargo et al. Learning Accurate Business Process Simulation Models from Event Logs via Automated Process Discovery and Deep Learning. CAiSE'2022 https://arxiv.org/abs/2103.11944