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Connected Components

The most basic graph problem?
In an undirected graph, two vertices are connected if 
there is a path between them.  A connected 
component (henceforth just a component) is a maximal 
set of pairwise-connected vertices.
Problem: Given a graph, compute its components.
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How to represent components?

Label all vertices in each component with a unique vertex in the 
component: can test if two vertices are in the same component by 
comparing their labels.
Assume n vertices, 1,…, n; m edges
Minimum labeling: Minimum vertex in component.
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Classic sequential algorithms

Graph search: breadth-first, depth-first or any other 
kind of search.
Disjoint set union: Use a disjoint-set (union-find) data 
structure. 



Maintain a collection of disjoint sets, each with a unique element called 
its leader, subject to three operations:
make-set(x) (x in no set): Create a set {x} with leader x
find(x): Return the leader of the set containing x
unite(x, y): If x and y are in different sets, unite these sets and choose a 
leader for the new set

Disjoint set union



Components via disjoint set union

for each vertex v do make-set(v) 
for each edge {x, y} do unite(x, y)
for each v do v.label = find(v)

Need not do the third loop, just use find as needed:
v and w are in the same component iff

find(v) = find(w)   



Running time
Graph search: O(m + n) m = #edges, n = #vertices
Disjoint set union via compressed trees:

O((m + n)α(n, m/n)) 
Disjoint set union uses only the edge set, supports 

individual and batch edge insertions
Inverse-Ackermann amortized time per 

edge insertion or query



Is this the end of the story?



What if the graph is really big?
[beyondplm.com]
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How big is “big”?

Billions of vertices, trillions of edges



Concurrency

Can we speed up the computation using lots of 
processes, as many as one or two per edge or vertex?

Computation models:
Common memory (PRAM)
Distributed memory (message-passing)

Critical issue: how much synchronization?

o



Synchronized model (with S. Liu) 

Many processors, all executing one step at a time synchronously
(global clock)

In the distributed model, a “step” can be a large amount of local 
computation



Naïve algorithm (“label propagation”)
replace each edge {v, w} by arcs vw and wv
for each vertex v do v.p ¬ v
repeat

for each arc vw do v.p ¬ min{v.p, w.p}
until no label changes

• v.p is the label of v (v points to v.p) 
• Repeat loop runs synchronously in parallel
• Write conflicts resolved in favor of smallest value
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Notes
Each vertex points to itself or a smaller vertex
No pointer cycles except loops (self-pointing vertices)
The pointers define a set of (in-)trees, each rooted at a self-pointing 
vertex
We call a self-pointing vertex a root
Roots are locally minimum
We call the label of a non-self-pointing vertex its parent
The roots in a component are the current candidates to be its leader
Each component is partitioned into one or more trees



How many steps?

Q(d) where d is the maximum diameter of a 
component

This algorithm does concurrent breadth-first search 
from the smallest vertices in the components

Slow on high-diameter graphs:
Paths of pointers can be long

We need a way to shortcut long paths



Faster?

Shortcut (also called compress, split, pointer jump):
for each v do v.p ¬ v.p.p

A shortcut roughly halves the distance from a vertex to a candidate for 
leader

Might lead to an algorithm that takes O(lgn) steps 



One more idea: root connection
When connecting, only change the parents of roots
We need one level of look-ahead

root-connect:
for each (v, w) do 

if v.p.p = v.p then v.p.p ¬ min{v.p.p, w.p}



Algorithm R (for Root-connect)

R: repeat
root-connect
shortcut

until no parent changes

Based on Shiloach-Vishkin 1982 but simpler
Crucially, breaks ties in favor of smallest label
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How fast?

Q(lgn) rounds worst-case: Liu and T 

Analysis uses a variant of the analysis of Awerbuch and Shiloach 1983 
plus a novel multi-round analysis to handle flat trees

A tree is flat if every vertex points directly to the root
A flat tree may not change for many rounds



The Latest

Behnezhad, Dhulipala, Esfandiari, Łącki, and Mirrokni 2019:
O(lgd + lglgm/nn) steps

in a powerful distributed model
complicated!

Uses randomization, but can be made deterministic:
Coy and Czumaj 2022



Algorithm R is fast in practice

BUT assuming global synchronization is unrealistic in practice

What if we assume NO synchronization?



Maintain a collection of disjoint sets, each with a unique element called 
its leader, subject to three operations:
make-set(x) (x in no set): Create a set {x} with leader x
find(x): Return the leader of the set containing x
unite(x, y): If x and y are in different sets, unite these sets and choose a 
leader for the new set

Disjoint set union



The power of laziness

Use indirection: do not store with each element the leader of its set, 
but provide a function to compute it (find)
Maintain a pointer field x.p in each node x, with each leader pointing to 
itself and such that following pointers from any node eventually leads 
to the leader of its set
To unite the sets containing v and w, find the leaders of their sets, and 
if they are different make one leader point to the other.  The “other” 
becomes the leader of the new set



Tree representation

Each set forms a rooted tree, whose nodes are the 
elements in the set, with each node x having a pointer 
to its parent x.p; if x is a root, x.p = x

The root of the tree is the set leader
The shape of the tree is arbitrary. The shape is 

determined by the execution of the operations

This is exactly the data structure used in concurrent 
label propagation and in Algorithm R 



Unite via link

link(x, y): Unite the trees with roots x and y

Implementation of link:
make y the parent of x (or x the parent of y):

x.p ¬ y (or y.p ¬ x)

Links take O(1) time, finds take O(path length) time



Implementation of disjoint sets
make-set(x): x.p ¬ x

find(x): if x.p = x then return x
else return find(x.p)

unite(x, y): if find(x) ¹ find(y) then
link(find(x), find(y))



A bad sequence of links can create a tree that is a path 
of n nodes, on which each find can take Ω(n) time, 
totaling Ω(mn) time for m finds

Goal: reduce the amortized time per find: reduce path 
lengths

Improve links: link by rank
Improve finds: compact the trees



Linking by rank: Maintain an integer rank for each root, 
initially 0.  Link root of smaller rank to root of larger rank.  
If tie, increase rank of new root by 1.

make-set(x): x.p ¬ x; x.r ¬ 0
link(x, y): if x.r = y.r then y.r ¬ y.r + 1;

if x.r < y.r then x.p ¬ y else y.p ¬ x

The rank of a root is the maximum length of a path to it (in 
arcs)

Linking by rank locally minimizes this maximum length



Shortcutting during a find

Splitting: replace the parent of each node on the find path by its 
grandparent

find(x): while x.p.p ¹ x.p do
y ¬ x.p; x.p ¬ y.p; x ¬ y

This is shortcutting applied only to the nodes on the find path
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How efficient is splitting, with or without 
linking by rank?



Compression with any linking rule

Θ(mlogm/nn) for m operations on sets with n elements total
This is Θ(logn) amortized time per find

Compression with linking by rank
Θ(mα(n, m/n)) for m operations on sets with n elements total (T 1975)
Θ(α(n, m/n)) amortized time per find



Ackermann’s function
(Péter & Robinson)

A0(n) = n + 1
Ak(0) = Ak – 1(1) if k > 0
Ak(n) = Ak – 1(Ak(n – 1)) if k > 0, n > 0

= Ak – 1
(n+1)(1)

= Ak – 1 applied to 1, n + 1 times

α(n, d) = min{k > 0|Ak(édù) > n} 



Application to connected components

For each vertex v do make-set(v)
For each edge {v, w} do link(find(v), find(w))
For each vertex v do v.label = find(v)

Can we run the main loop concurrently but asynchronously?



Efficiency

Total work: total number of steps taken by all processes, as a worst-
case function of n, m, and p (the number of processes)
Goals: Total work not too much bigger than the sequential time bound 
and sublinear in p; number of steps per operation small

Then concurrency may help

We allow concurrent reads but not concurrent writes 



Synchronization Primitives to avoid locks

Compare & Swap
CAS(x, y, z): if x = y then {x ¬ z; return true}

else return false
Double Compare & Swap

DCAS(x, y, z, u, v, w): if x = y and u = v
then {x ¬ z; u ¬ w; return true}
else return false

A CAS succeeds only if the value did not change since the process 
last read it; the process knows whether the CAS succeeds or fails



Previous work: Anderson & Woll 1994

Concurrent version of linking by rank with splitting using CAS.
Big problem: CAS seems too weak: linking by rank requires changing a 
rank in one node and a pointer in another.
Their algorithm does not avoid rank ties.
Work bound is O(m(α(n, 1) + p)): not so good, and “proof” is buggy: 
they did not account for interactions between different processors 
doing splitting along overlapping paths.



Our goal (Jayanti and T 2016-2022)

Simple algorithms with good work and step bounds, work bound 
sublinear in p if possible

Anderson & Woll gave a simple wait-free implementation of find with 
splitting using CAS, but their analysis is not correct  

What about linking by rank?



Link: CAS or DCAS?

CAS okay for  links not using ranks, DCAS needed for links by rank



Linking by rank via CAS

link(v, w): if v and w have equal rank, first change the parent of v, or 
the rank of w?

Our answer: flip a fair coin to decide:
randomized linking by rank



In concurrent linking, must allow for failure, retry until success



Concurrent Find(x)

𝐅𝐢𝐧𝐝(𝑥)
u = 𝑥

𝐰𝐡𝐢𝐥𝐞 (u not root)
v = u.parent, w = v.parent
CAS(u.parent, v, w)
u = v

𝐫𝐞𝐭𝐮𝐫𝐧 u

w

v

u

u



Interfering splits threaten efficiency
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• 𝜋A visits 1,2,3 and stalls
• 𝜋B visits 2,3,4 and changes parent of 2 to 4
• 𝜋C visits 1,2,4 and tries to change 1’s parent to 4
• but 𝜋A wakes up and changes 1’s parent to 3

• 𝜋C tries to split, but witnesses no improvement

• Anderson and Woll overlooked these possibilities



Concurrent Two-Try Find(x)
𝐅𝐢𝐧𝐝 𝑥 :

u = 𝑥

𝐰𝐡𝐢𝐥𝐞 (u not root)
v = u.parent, w = v.parent
CAS(u.parent, v, w)
v = u.parent, w = v.parent
CAS(u.parent, v, w) 
u = v

𝐫𝐞𝐭𝐮𝐫𝐧 u



Our Results
DCAS gives a simple wait-free implementation of  
linking by rank.

Worst-case time per operation
O(logn) with or without splitting
Total work with  “1-try” splitting 

O(m(α(n, ém/(np2)ù) + log(np2/m + 1)))
Total work with  “2-try” splitting 

O(m(α(n, ém/(np)ù) + log(np/m + 1)))



Our Results
CAS gives a simple wait-free implementation of linking 
by randomized linking by rank

Worst-case time per operation (w.h.p.)
O(logn) with or without splitting

Expected work with 1-try splitting 
O(m(α(n, ém/(np2)ù) + log(np2/m + 1)))

Expected work with 2-try splitting 
O(m(α(n, ém/(np)ù) + log(np/m + 1)))

Assumes a benign scheduler
Randomized linking by rank is more robust against an 
adversarial scheduler  



Versions of these algorithms are very fast in 
practice

One of the few examples where one can prove good speedup in an 
asynchronous setting



Thanks!


