
Finding Connected Components
in Massive Graphs

DB&IS 4 July 2022

Robert E. Tarjan
Princeton University

Joint work with Sixue (Cliff) Liu, CMU;
Siddhartha Jayanti, MIT

Thanks to Siddhartha for some slides

Connected Components

The most basic graph problem?
In an undirected graph, two vertices are connected if
there is a path between them. A connected
component (henceforth just a component) is a maximal
set of pairwise-connected vertices.
Problem: Given a graph, compute its components.

[vitoshoacademy.com]

[figure from D. Eppstein]

[math.stackexchange]

How to represent components?

Label all vertices in each component with a unique vertex in the
component: can test if two vertices are in the same component by
comparing their labels.
Assume n vertices, 1,…, n; m edges
Minimum labeling: Minimum vertex in component.

Minimum labeling
75

2

3

1

6

4

1 1
2 1
3 1
4 1
5 1
6 1
7 1

Minimum labeling
75

2

3

1

6

4

1 1
2 1
3 1
4 1
5 1
6 1
7 1

Classic sequential algorithms

Graph search: breadth-first, depth-first or any other
kind of search.
Disjoint set union: Use a disjoint-set (union-find) data
structure.

Maintain a collection of disjoint sets, each with a unique element called
its leader, subject to three operations:
make-set(x) (x in no set): Create a set {x} with leader x
find(x): Return the leader of the set containing x
unite(x, y): If x and y are in different sets, unite these sets and choose a
leader for the new set

Disjoint set union

Components via disjoint set union

for each vertex v do make-set(v)
for each edge {x, y} do unite(x, y)
for each v do v.label = find(v)

Need not do the third loop, just use find as needed:
v and w are in the same component iff

find(v) = find(w)

Running time
Graph search: O(m + n) m = #edges, n = #vertices
Disjoint set union via compressed trees:

O((m + n)α(n, m/n))
Disjoint set union uses only the edge set, supports

individual and batch edge insertions
Inverse-Ackermann amortized time per

edge insertion or query

Is this the end of the story?

What if the graph is really big?
[beyondplm.com]

[Max Delbruck Center for Molecular Medicine]

[hub.packtub.com]

How big is “big”?

Billions of vertices, trillions of edges

Concurrency

Can we speed up the computation using lots of
processes, as many as one or two per edge or vertex?

Computation models:
Common memory (PRAM)
Distributed memory (message-passing)

Critical issue: how much synchronization?

o

Synchronized model (with S. Liu)

Many processors, all executing one step at a time synchronously
(global clock)

In the distributed model, a “step” can be a large amount of local
computation

Naïve algorithm (“label propagation”)
replace each edge {v, w} by arcs vw and wv
for each vertex v do v.p ¬ v
repeat

for each arc vw do v.p ¬ min{v.p, w.p}
until no label changes

• v.p is the label of v (v points to v.p)
• Repeat loop runs synchronously in parallel
• Write conflicts resolved in favor of smallest value

75

2

3

1

6

4

1
2
3
4
5
6
7

75

2

3

1

6

4

1
2
3
4
5
6
7

75

2

3

1

6

4

1 1
2 2
3 2
4 1
5 3
6 4
7 5

75

2

3

1

6

4

1 1 1
2 2 2
3 2 2
4 1 1
5 3 2
6 4 1
7 5 3

75

2

3

1

6

4

1 1 1 1
2 2 2 2
3 2 2 2
4 1 1 1
5 3 2 2
6 4 1 1
7 5 3 1

75

2

3

1

6

4

1 1 1 1 1
2 2 2 2 2
3 2 2 2 2
4 1 1 1 1
5 3 2 2 1
6 4 1 1 1
7 5 3 1 1

75

2

3

1

6

4

1 1 1 1 1 1
2 2 2 2 2 2
3 2 2 2 2 1
4 1 1 1 1 1
5 3 2 2 1 1
6 4 1 1 1 1
7 5 3 1 1 1

75

2

3

1

6

4

1 1 1 1 1 1 1
2 2 2 2 2 2 1
3 2 2 2 2 1 1
4 1 1 1 1 1 1
5 3 2 2 1 1 1
6 4 1 1 1 1 1
7 5 3 1 1 1 1

Notes
Each vertex points to itself or a smaller vertex
No pointer cycles except loops (self-pointing vertices)
The pointers define a set of (in-)trees, each rooted at a self-pointing
vertex
We call a self-pointing vertex a root
Roots are locally minimum
We call the label of a non-self-pointing vertex its parent
The roots in a component are the current candidates to be its leader
Each component is partitioned into one or more trees

How many steps?

Q(d) where d is the maximum diameter of a
component

This algorithm does concurrent breadth-first search
from the smallest vertices in the components

Slow on high-diameter graphs:
Paths of pointers can be long

We need a way to shortcut long paths

Faster?

Shortcut (also called compress, split, pointer jump):
for each v do v.p ¬ v.p.p

A shortcut roughly halves the distance from a vertex to a candidate for
leader

Might lead to an algorithm that takes O(lgn) steps

One more idea: root connection
When connecting, only change the parents of roots
We need one level of look-ahead

root-connect:
for each (v, w) do

if v.p.p = v.p then v.p.p ¬ min{v.p.p, w.p}

Algorithm R (for Root-connect)

R: repeat
root-connect
shortcut

until no parent changes

Based on Shiloach-Vishkin 1982 but simpler
Crucially, breaks ties in favor of smallest label

75

2

3

1

6

4

1
2
3
4
5
6
7

75

2

3

1

6

4

1
2
3
4
5
6
7

root-connect

75

2

3

1

6

4

1 1
2 2
3 2
4 1
5 3
6 4
7 5

shortcut

75

2

3

1

6

4

1 1 1
2 2 2
3 2 2
4 1 1
5 3 2
6 4 1
7 5 3

root-connect

75

2

3

1

6

4

1 1 1 1
2 2 2 2
3 2 2 2
4 1 1 1
5 3 2 2
6 4 1 1
7 5 3 3

shortcut

75

2

3

1

6

4

1 1 1 1 1
2 2 2 2 2
3 2 2 2 2
4 1 1 1 1
5 3 2 2 2
6 4 1 1 1
7 5 3 3 2

root-connect

75

2

3

1

6

4

1 1 1 1 1 1
2 2 2 2 2 1
3 2 2 2 2 2
4 1 1 1 1 1
5 3 2 2 2 2
6 4 1 1 1 1
7 5 3 3 2 2

shortcut

75

2

3

1

6

4

1 1 1 1 1 1 1
2 2 2 2 2 1 1
3 2 2 2 2 2 1
4 1 1 1 1 1 1
5 3 2 2 2 2 1
6 4 1 1 1 1 1
7 5 3 3 2 2 1

How fast?

Q(lgn) rounds worst-case: Liu and T

Analysis uses a variant of the analysis of Awerbuch and Shiloach 1983
plus a novel multi-round analysis to handle flat trees

A tree is flat if every vertex points directly to the root
A flat tree may not change for many rounds

The Latest

Behnezhad, Dhulipala, Esfandiari, Łącki, and Mirrokni 2019:
O(lgd + lglgm/nn) steps

in a powerful distributed model
complicated!

Uses randomization, but can be made deterministic:
Coy and Czumaj 2022

Algorithm R is fast in practice

BUT assuming global synchronization is unrealistic in practice

What if we assume NO synchronization?

Maintain a collection of disjoint sets, each with a unique element called
its leader, subject to three operations:
make-set(x) (x in no set): Create a set {x} with leader x
find(x): Return the leader of the set containing x
unite(x, y): If x and y are in different sets, unite these sets and choose a
leader for the new set

Disjoint set union

The power of laziness

Use indirection: do not store with each element the leader of its set,
but provide a function to compute it (find)
Maintain a pointer field x.p in each node x, with each leader pointing to
itself and such that following pointers from any node eventually leads
to the leader of its set
To unite the sets containing v and w, find the leaders of their sets, and
if they are different make one leader point to the other. The “other”
becomes the leader of the new set

Tree representation

Each set forms a rooted tree, whose nodes are the
elements in the set, with each node x having a pointer
to its parent x.p; if x is a root, x.p = x

The root of the tree is the set leader
The shape of the tree is arbitrary. The shape is

determined by the execution of the operations

This is exactly the data structure used in concurrent
label propagation and in Algorithm R

Unite via link

link(x, y): Unite the trees with roots x and y

Implementation of link:
make y the parent of x (or x the parent of y):

x.p ¬ y (or y.p ¬ x)

Links take O(1) time, finds take O(path length) time

Implementation of disjoint sets
make-set(x): x.p ¬ x

find(x): if x.p = x then return x
else return find(x.p)

unite(x, y): if find(x) ¹ find(y) then
link(find(x), find(y))

A bad sequence of links can create a tree that is a path
of n nodes, on which each find can take Ω(n) time,
totaling Ω(mn) time for m finds

Goal: reduce the amortized time per find: reduce path
lengths

Improve links: link by rank
Improve finds: compact the trees

Linking by rank: Maintain an integer rank for each root,
initially 0. Link root of smaller rank to root of larger rank.
If tie, increase rank of new root by 1.

make-set(x): x.p ¬ x; x.r ¬ 0
link(x, y): if x.r = y.r then y.r ¬ y.r + 1;

if x.r < y.r then x.p ¬ y else y.p ¬ x

The rank of a root is the maximum length of a path to it (in
arcs)

Linking by rank locally minimizes this maximum length

Shortcutting during a find

Splitting: replace the parent of each node on the find path by its
grandparent

find(x): while x.p.p ¹ x.p do
y ¬ x.p; x.p ¬ y.p; x ¬ y

This is shortcutting applied only to the nodes on the find path

10

8

5

2

1

7

3 4

10

8

5

2

1

7

3 4

Splitting

10

85

21

7

3 4

Splitting

How efficient is splitting, with or without
linking by rank?

Compression with any linking rule

Θ(mlogm/nn) for m operations on sets with n elements total
This is Θ(logn) amortized time per find

Compression with linking by rank
Θ(mα(n, m/n)) for m operations on sets with n elements total (T 1975)
Θ(α(n, m/n)) amortized time per find

Ackermann’s function
(Péter & Robinson)

A0(n) = n + 1
Ak(0) = Ak – 1(1) if k > 0
Ak(n) = Ak – 1(Ak(n – 1)) if k > 0, n > 0

= Ak – 1
(n+1)(1)

= Ak – 1 applied to 1, n + 1 times

α(n, d) = min{k > 0|Ak(édù) > n}

Application to connected components

For each vertex v do make-set(v)
For each edge {v, w} do link(find(v), find(w))
For each vertex v do v.label = find(v)

Can we run the main loop concurrently but asynchronously?

Efficiency

Total work: total number of steps taken by all processes, as a worst-
case function of n, m, and p (the number of processes)
Goals: Total work not too much bigger than the sequential time bound
and sublinear in p; number of steps per operation small

Then concurrency may help

We allow concurrent reads but not concurrent writes

Synchronization Primitives to avoid locks

Compare & Swap
CAS(x, y, z): if x = y then {x ¬ z; return true}

else return false
Double Compare & Swap

DCAS(x, y, z, u, v, w): if x = y and u = v
then {x ¬ z; u ¬ w; return true}
else return false

A CAS succeeds only if the value did not change since the process
last read it; the process knows whether the CAS succeeds or fails

Previous work: Anderson & Woll 1994

Concurrent version of linking by rank with splitting using CAS.
Big problem: CAS seems too weak: linking by rank requires changing a
rank in one node and a pointer in another.
Their algorithm does not avoid rank ties.
Work bound is O(m(α(n, 1) + p)): not so good, and “proof” is buggy:
they did not account for interactions between different processors
doing splitting along overlapping paths.

Our goal (Jayanti and T 2016-2022)

Simple algorithms with good work and step bounds, work bound
sublinear in p if possible

Anderson & Woll gave a simple wait-free implementation of find with
splitting using CAS, but their analysis is not correct

What about linking by rank?

Link: CAS or DCAS?

CAS okay for links not using ranks, DCAS needed for links by rank

Linking by rank via CAS

link(v, w): if v and w have equal rank, first change the parent of v, or
the rank of w?

Our answer: flip a fair coin to decide:
randomized linking by rank

In concurrent linking, must allow for failure, retry until success

Concurrent Find(x)

𝐅𝐢𝐧𝐝(𝑥)
u = 𝑥

𝐰𝐡𝐢𝐥𝐞 (u not root)
v = u.parent, w = v.parent
CAS(u.parent, v, w)
u = v

𝐫𝐞𝐭𝐮𝐫𝐧 u

w

v

u

u

Interfering splits threaten efficiency

w

v

1

2

3

4

5Sample Run
• 𝜋A visits 1,2,3 and stalls
• 𝜋B visits 2,3,4 and changes parent of 2 to 4
• 𝜋C visits 1,2,4 and tries to change 1’s parent to 4
• but 𝜋A wakes up and changes 1’s parent to 3

• 𝜋C tries to split, but witnesses no improvement

• Anderson and Woll overlooked these possibilities

Concurrent Two-Try Find(x)
𝐅𝐢𝐧𝐝 𝑥 :

u = 𝑥

𝐰𝐡𝐢𝐥𝐞 (u not root)
v = u.parent, w = v.parent
CAS(u.parent, v, w)
v = u.parent, w = v.parent
CAS(u.parent, v, w)
u = v

𝐫𝐞𝐭𝐮𝐫𝐧 u

Our Results
DCAS gives a simple wait-free implementation of
linking by rank.

Worst-case time per operation
O(logn) with or without splitting
Total work with “1-try” splitting

O(m(α(n, ém/(np2)ù) + log(np2/m + 1)))
Total work with “2-try” splitting

O(m(α(n, ém/(np)ù) + log(np/m + 1)))

Our Results
CAS gives a simple wait-free implementation of linking
by randomized linking by rank

Worst-case time per operation (w.h.p.)
O(logn) with or without splitting

Expected work with 1-try splitting
O(m(α(n, ém/(np2)ù) + log(np2/m + 1)))

Expected work with 2-try splitting
O(m(α(n, ém/(np)ù) + log(np/m + 1)))

Assumes a benign scheduler
Randomized linking by rank is more robust against an
adversarial scheduler

Versions of these algorithms are very fast in
practice

One of the few examples where one can prove good speedup in an
asynchronous setting

Thanks!

