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EMBL member states in 2022

Member states (27)

Austria 1974
Denmark 1974
France 1974
Germany 1974
lsrael 1974

italy 1974
Netherlands 1974
Sweden 1974
Switzerland 1974
United Kingdom 1974
Finland 1984
Greece 1984
Norway 1985
Spain 1986

Belgium 1990
Portugal 1998
Ireland 2003
lceland 2005
Croatia 2006
Luxembourg 2007
Czech Republic 2014
Malta 2016
Hungary 2017
Slovakia 2018
Montenegro 2018

Lithuania 2019
Poland 2019
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Six sites with almost 1900 people and >90 nationalities
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Wellcome Genome Campus in Hinxton, near Cambridge, UK




What is EMBL-EBI?

World leading source of public biomolecular
data

Cutting edge research in bioinformatics and
computational biology

Part of the European Molecular Biology
Laboratory (EMBL), Europe’s flagship
laboratory for the life sciences.




Bioinformatics is interdisciplinary field that develops

methods and software tools for understanding biological
data (Wikipedia 2022)

Data science In biology
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Bioinformatics: from fringe to mainstream
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Central dogma of molecular biology and OMICs
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Human Genome project was an epic
°* 1990 - 2003 about 85% of the 3 billion letters of human genome sequenced

* The first "gapless” human genome sequence was achieved only in 2022

* HGP budget over the 13 years was $ 3 billion, though the actual sequencing costs
were considerably less

* Some lessons from HGP

* There are 20,000 protein coding genes and some other genes (most shared with other
mammals)

* Less than 2% of the human genome codes for proteins (other parts are interesting too)

* Over a half of human genome consist of repeated sequences of different length
apparently not having any function (junk genome)

* Sequencing one human genome in 2022 is < $1000

°* Genomes of two unrelated individuals differ in 1 "letter” per 3000 on average
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Personalized genomics - assembling a new genome Vvs.
mapping sequencing “reads” to a reference genome

The output of a DNA sequencing machine is a set of many ~100 letter long
sequences that jointly cover (most of the genome) 10 to 50 times on average

* Current sequencing technologies output pairs of such ~100 letter sequences with
approximately known distance between them

read insert read The “insert” may help to deal
~100 ~100 with repeated sequences in
the genome
...gatg... 200 - 800 ...atga... g

Once we have one - reference - genome, to get another we can “map” these
“reads” onto the reference to obtain the new one

Mismatches of letters in the “read” can be genome variation or errors

If we can "trust” the reference? Many references for different populations



Personal genomics: what do genomes tell us?

What do we
have | What causes How
common with susceptibility important are
other to disease? lifestyle
animals”?

choices”?

¢

How and why What makes
do we differ some people
from one more sensitive
another? to drugs?
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Genomics promises a leap forward for rare
disease diagnosis Rare

Faster and cheaper DNA sequencing brings new hope to patients d iseases

Jessica suffers from a rare condition that was diagnosed through DNA analysis

“Kate Palmer and Simon Wright were in despair. Their four-year-old daughter
Jessica was suffering from epilepsy, poorly co-ordinated movement and slow
mental development, but doctors had been unable to pinpoint the rare disorder
causing these problems.”

EMBL i



* Jessica was enrolled in the UK 100,000 genome project

* By analysing Jessica’s genome, a mutation in a gene called
SLC2A1 was found starving her brain of the sugar

* This condition is extremely rare, but there is a treatment in
the form of a diet that enables the brain to maximise
glucose production

* After a month on the new diet, Jessica’s parents “noticed a
big increase in her speech, energy levels and general
steadiness”

EMBL



Sharing personal genome data

* While reference are an average of many genomes, individual genomes are unique
and can be linked to person and other information

* |mplication to privacy, health insurance, etc

°* Pseudonymisation (or even anonymization) is not sufficient to be sure that one’s
genome identity is not revealed - linking to health records, etc

°* Consent and law
* Controlled access by bone-fide researchers

* |n many countries personal genome data are not allowed to leave the country by
law

* Solutions: federation of data, common standards, cloud computing



Know your genome

* Figuring out which regions are involved in disease —
and what they do — is a major challenge.

3 billion bases

s
9§

4 million variants

21 000 *coding* variants

10 000 non-synonymous variants

[ U

50-100 ‘loss of function’ variants
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Federated European Genome-phenome Archive (FEGA) 4

>20 countries / national Central EGA node

initiatives and counting! = Federated EGA node
[} Preparing to sign FEGA

Collaboration Agreement
| | Engaging in work to

establish a FEGA node
Expressing interest in éﬁ}

joining FEGA Network

................




Beyond 1 Million Genomes Project B1MG

Building towards genomic data infrastructure

Cross-border access to 1+Million
genomic datasets by 2022

¥

Federated EGA 1+ Million Genomes
Initiative

Beyond One Million
Genomes Project

@ Signatory countries

Observers




Data generated for research project vs. data generated as a
part of healthcare

Research data:

Disease Associations

Molecular biology
resource

T
-

Cohort of Patients

L

Healthcare genomics
data and electronic
health records

Feedback to patients
Actionable variants

Iceland; Denmark:; Faroe; Finland;
Dundee; UK BioBank; (others)
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VA for Genomics & Health

The Global Alliance for Genomics and Health (GA4GH) is an
international, nonprofit alliance formed in 2013 to accelerate the
potential of research and medicine to advance human health.
Bringing together 600+ leading organizations working in healthcare,
research, patient advocacy, life science, and information
technology, the GA4AGH community is working together to create
frameworks and standards to enable the responsible, voluntary,
and secure sharing of genomic and health-related data.

https://www.ga4gh.org/
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Not only humans

sequencing life for the future of life

Earth Biogenome Project (EBP)

The Earth BioGenome Project (EBP), a moonshot for biology, aims to sequence, catalog and characterize the genomes of all of Earth's

eukaryotic biodiversity over a period of ten years. More information can be found in the EBP official web portal at

https://www.earthbiogenome.org@.

EBP Contribution to Eukaryotic Genome Sequencing

To sequence a 1.5 million known eukaryotic species in 10 years

Progress of Eukaryotic Genome Sequencing by Taxon Rank: all assemblies in INSDC and those submitted under the EBP umbrella (BioProject PRJINA533106)

82.1%

fomas]
shylum order
55/67 /281 599 / 1.39k /9.63k
genus
4.63k / 119k /1.55M

All INSDC taxa - Taxa with assemblies out of all
Eukaryotic taxa in INSDC

I T T [T PINSTRICHrN- (SNSey Y OGN NASy Y8 UpeeRl | I

shylum order
16 /67 /281 150 /1.39k /9.63k
genus
916 / 119k /1.55M

EBP Umbrella - EBP taxa with assemblies out of all
Eukaryotic taxa in INSDC

1 superkingdoms
3 kingdoms

16 phyla

33 classes

150 orders

503 families

916 genera

1,025 species
19 subspecies

Counts of taxa sequenced under the EBP Umbrella.
Contribution of Projects under EBP Umbrella Project Id
PRJNA533106, corresponding to 17 out of the 49
affiliated projects in the EBP Network




Data growth of EMBL-EBI services volume of data (megabytes)
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Cancer Genomics

* Cancer is a genome disease

* Human has ~1013 cells, many growing and dividing, there are 2-3 mutations per
every cell division

* As important genes, such as DNA-repair genes, get mutated, more mutations
accumulate, and genomes get increasingly changed

* Roughly 300 cancer genes are known, mutation in which can lead to cancer
* Some cells escape control and start proliferate - tumors

°* Some go on to migrate - metastasis



Vol 46415 April 2010|doi:10.1038/nature08987

nature

PERSPECTIVES

International network of cancer genome

projects

The International Cancer Genome Consortium (ICGC) was launched to
coordinate large-scale cancer genome studies in tumours from 50
different cancer types and/or subtypes that are of clinical and societal
importance across the globe. Systematic studies of more than 25,000

cancer genomes at the genomic, epigenomic and transcriptomic levels

will reveal the repertoire of oncogenic mutations, uncover traces of the
mutagenic influences, define clinically relevant subtypes for prognosis
and therapeutic management, and enable the development of new

cancer therapies

A subset of the somatic mutations in cancer cells confers oncogenic
properties such as growth advantage, tissue invasion and metastasis,
angiogenesis, and evasion of apoptosis’. These are termed ‘driver’
mutations. The identification of driver mutations will provide insights
into cancer biology and highlight new drug targets and diagnostic
tests. Knowledge of cancer mutations has already led to the develop-
ment of specific therapies, such astrastuzumab for HER2 (also known
. ATI'TYTT * | T o 4

P o B 25 2 ) 2 L= ) T T I . . . Lt L

ul . . .
org/files/ICGC_April_29_2008.pdf). Since then, working groups and
initial member projects have further refined the policies and plans for
international collaboration.

Bioethical framework

ICGC members agreed to a core set of bioethical elements for consent
as a precondition of membership (Box 2). The Ethics and Policy




Pan-Cancer Analysis of Whole Genomes of ICGC completed 2020

Theinternational journal of science / 6 February 2020

nature
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PCAWG Transcriptome Core Group'®®, Claudia Calabrese®*®, Natalie R. Davidson®*5673,
Deniz Demircioglu®®*®, Nuno A. Fonseca®®®, Yao He'®®, André Kahles®*%735,

Kjong-Van Lehmann®*%7%, Fenglin Liu'5, Yuichi Shiraishi™*%, Cameron M. Soulette>,
Lara Urban?®, Liliana Greger?, Siliang Li"**, Dongbing Liu****, Marc D. Perry™*, Qian Xiang®,
Fan Zhang', Junjun Zhang®™, Peter Bailey”, Serap Erkek™, Katherine A. Hoadley™,

Yong Hou™*, Matthew R. Huska?®, Helena Kilpinen?, Jan O. Korbel®,

Maximillian G. Marin'?, Julia Markowski?°, Tannistha Nandi®, Qiang Pan-Hammarstrom22,
Chandra Sekhar Pedamallu®?*?, Reiner Siebert?*, Stefan G. Stark**%”, Hong Su™*,
Patrick Tan®%, Sebastian M. Waszak', Christina Yung'®, Shida Zhu™*, Philip Awadalla'™?,
Chad J. Creighton?, Matthew Meyerson?*?*?%, B. F. Francis Ouellette®, Kui Wu™*,
Huanming Yang®, PCAWG Transcriptome Working Group', Alvis Brazma?®¢*,

Angela N. Brooks'>2*?23%+ Jonathan Goke®**®, Gunnar Ratsch®#56736

Roland F. SchwarzZ?**%% Qliver Stegle?'***?¢, Zemin Zhang'**® & PCAWG Consortium

Transcript alterations often result from somatic changes in cancer genomes'. Various
forms of RNA alterations have been described in cancer, including overexpression?,
altered splicing® and gene fusions*; however, it is difficult to attribute these to
underlying genomic changes owing to heterogeneity among patients and tumour
types, and the relatively small cohorts of patients for whom samples have been
analysed by both transcriptome and whole-genome sequencing. Here we present, to
our knowledge, the most comprehensive catalogue of cancer-associated gene
alterations to date, obtained by characterizing tumour transcriptomes from 1,188
donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the
International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas
(TCGA)®. Using matched whole-genome sequencing data, we associated several
categories of RNA alterations with germline and somatic DNA alterations, and
identified probable genetic mechanisms. Somatic copy-number alterations were the



Cancer Genomics

* Cancer genomics is complicated

e Because of clonality there is not longer one genome

* To find what is changed in cancer cells we compare normal genome (e.g., from blood
cells) to tumor genomes - personalized genome becomes the rererence




Cancer related genome rearrangements cause
genes to fuse creating "cancer genes”

* Hybrid genes formed from two previously separate genes as a
result from of genomic rearrangements, read-through
transcription and trans-splicing.

Fusion gene X ->Y

JiR—
,/
7/
/
7/ N
7 / Rt &
= —
. [ —
— E—E
-—{- -——-
gene X gene Y

Fusion genes are tumor-specific and therefore important targets for therapy.

Figure adapted from Edgren et al, Genome Biol. 2011
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Central dogma of molecular biology - transcriptomics

...gatgatgatgatgatgatgatgatgatgatgatgaggacaactctctttttccaacaagagagccaagaagccatttttttccatttgatctgtttccaatg...

* gene 2 “

DNA g
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l l * Human genome
* Transcriptome
A% « different genes are expressed in different
RNA ’\/’\/ AV cells under different conditions (disease vs

(transcriptome) normal)

* RNA abundance levels can be assessed by
sequencing (RNA-seq)

* There is at least 1000-fold dynamic range

Proteins

(proteome) * Proteome - there is no straight-forward
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Query single cell expression

Expression Atlas

' To Single Cell Expression Atlas ¥

Gene expression across species and biological conditions

& Browse experiments Y. Download Release notes @ Licence @ About ® Support

Search across 65 species, 4,052 studies, 134,900 assays Ensembl 99, Ensembl Genomes 46, WormBase ParaSite 14, EFO 3.10.0
Search Gene set enrichment
Gene / Gene properties Species Biological conditions
REG1B x Homo sapiens v
Examples: REG1B, zinc finger, 014777 (UniProt), GO:0010468 (regulation of gene expression) Examples: lung, leaf, valproic acid, cancer
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| 4
Homo sapiens Mus musculus Rattus norvegicus Drosophila Gallus gallus Caenorhabditis elegans
1449 experiments 1153 experiments 152 experiments melanoQaSter 36 experiments 29 experiments
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Differential: 1390 Differential: 1107 Differential: 149 Baseline: 4 Differential: 33 Differential: 28
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Tissues consists of cells of different types

THE CELL IS THE FUNDAMENTAL UNIT OF LIFE

<re g 2y '
T T ofc. o

Cells Tissue Organ

It is often said that human has ~200 different cell types



Human body contains >1013 cells of 200 different types
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From looking at gene expression in tissues to individual cells

Single-cell genomics
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Single Cell
RNA

sequencing

a Manual

Multiplexing
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GTEx

68 FANTOMS project - fetal

Hallstrom et al., 2014 - Organism part
32 Uhlen's Lab
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68 FANTOMS project - adult
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Single Cell Expression Atlas

Single cell transcriptome analysis of human pancreas
Single-cell RNA-Seq mRNA baseline

Organism: Homo sapiens

REG1B expression

Publication:
« Enge M, Arda HE, Mignardi M, Beausang J, Bottino R et al. (2017) Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation
Patterns.
Results Experiment Design Supplementary Information Downloads
t-SNE Perplexity Colour plot by:
| 10 v | | k = characteristic_inferred_cell_type
Clusters =
Aci I
L]
SSea kY,
® e

8
[ 4

Cell ID: SRR3563936 "
Cluster name: Acinar cell S 5 o

!n’erred (eIF type: acinar cell | J. ; & . = L y® ‘:’ % %/ .“
‘l: b \. P o I > g o 4' g‘ -’
o S Lo e ‘asen - 5
‘;&.' j 1 P 5 L) e 5%‘}. ’ &
‘\“x‘. pams: 2N e’y .}i{"

) },. ‘4 % o _.0 o Saned
k! o o3 .:'3 = * 9 .. ‘> o
. §~,‘§§ g‘g:'%:,‘ ST e
% - h’"!  _ 1 » %.
7‘ “ o: ‘l?,

Acinar cell Mesenchymal cell ® Not available #® Pancreatic A cell Pancreatic D cell ® Pancreatic ductal cell Type B pancreatic cell

X
3

Gene ID, gene name or gene feature

IN human pancreas

Gene expression

ENSG00000172023

TSN plots (non-liner PCR)

Gene expression

10000 TPM
45167.97

EMBL i




Human body contains >1013 cells of 200 different types
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What is a cell type?

* Acell type is a classification traditionally used to distinguish

between morphologically or phenotypically distinct cell forms within
a species

* Nowadays cell types are typically defined through sets of genes
specifically expressed there, called marker genes

Both definitions are only proxies and there is no generally agreed
definition of this concept
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Marker genes for immune cells
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Automated approaches using known marker genes

Cell types
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We wanted to automate the cell type identification process In

a way that allows for discovery of new cell “types” as well as
new marker genes automatically

* Problem of finding the cell clusters corresponding to biologically meaningful cell
groups (cell “types”)

* Building gene expression “models” for each group — which are the genes that
are differentially expressed for the group?

* Single Cell Clustering Assessment Framework - SCCAF

EMBL-EBI
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SCCAF in a nutshell:

_____________________________________ SCCAF produces a model for each

Machine

1
1
1
1
: genes)
:
1
1

cluster discriminating it from the rest of
the training data (e.g., a weighted list of

|
1
|
I
cells lcy G C3Cy learnin
1
|
1
24 I
o - . N
5 ScRNA Cluster M Split \ ! oggoo< : )
S| seq | Test | 5
l %
data | |! o
i Forget \ E l Y
l\ the ] a;:: o°
~ clusters I N A P
Step 1 — computing the . | ot
confusion matrix M :
Step 2 — compute the cluster M Compare :
connection graph and merge D N c,'
theclusters @ emmmmm oo et e e e e -

Cq ) C
c Normalise (R
2 >

| and

Iterate Step 1 and Step 2

|
|
|
|
|
while self-projection accuracy i
|
|
|
|
|

C3 discretise
is increasing Csq Cq — > C4
Can be viewed as a type of Cluster confusion matrix _ !
Self-projection accuracy Cluster connection graph:

hierarchical clustering e e e e e e e e e e e e ]

Miao et al, Nature Methods, 2020
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Comparison with expert annotation of the mouse retina dataset
from Shekhar et al. 2016

Cone Photoreceptors - 17
Rod Photoreceptors 16
AC (Amacrine cell) 15
BCB8/9 (mixture of BC8 and BC9) 14
BC4 13
BCS5B 12
BC3A 11
® RBC (Rod Bipolar cell) BCSD 10 o0
. ® MG (Mueller Glia) o1
Mouse_Retina_Shekhar_et_al. | ;. (Cone Bipolar cell 5A) :::‘:B : | SCCAF_result pn
@ BC7 (Cone Bipolar cell 7) § 3
® BC6 BCIB 2 ; , 04
® BC5C BCIA 6 ] 5
» BC1A 6
© BC3B BCS5C 5 o7
. e BC1B ®8
© BC2 80 4 .9
» BC5D e 10
- BC3A BC7 (Cone Bipolar cell 7) 3 e 11
« BC5B ® 12
« BC4 BC5A (Cone Bipolar cell 5A) 2 ® 13
©» BCB8/9 (mixture of BC8 and BC9) e 14
AC (Amacrine cell) 15
Rod Photoreceptors MG (Mueller Glia) 1 16
« Cone Photoreceptors ® 17

RBC (Rod Bipolar cell)

Adjusted Rand index >0.99.

EMBL




Annotating human brain data based on model trained on
mouse (Allen Brain Atlas)

Glutamatergic_KC/MC/PC SAMD5

e Glutamatergic_L2/3 COL5A2 CA10
GABAergic_ILIRAPL2 ® Glutamatergic_L2/3/4ab TESPA1 MEIS2
GABAergic_LAMPS ANO4 e Glutamatergic_L4/5 TLL1 PDE4B
GABAergic_LAMPS CHST9 ® Glutamatergic_L4/5 VWC2L SLC35F3

® GABAergic_LAMPS FRAS1 @ Glutamatergic_L4abc SPHKAP
GABAergic_LHFPL3 ® Glutamatergic_L4abc TSHZ2 ZNF804B
GABAergic_LUZP2 ® Glutamatergic_L4c/5 EYA4 CDH20

® GABAergic_PVALB SLIT2 ® Glutamatergic_L4c/5 PDE1C FMN1

® GABAergic_SST GRIK1 ® Glutamatergic_L5/6 ARHGAP15 PDZRN4
GABAergic_SST NPY ® Glutamatergic_L5/6 GRM8

® GABAergic_VIP OLFM3 ® Glutamatergic_L5/6 HTR2C

¢ GABAergic_ZFPM2 ® Glutamatergic_L5/6 RGS12 ITGB8

® Non-Neuronal_Astro DPP10 ® Glutamatergic_L5/6ab ANXAL

® Non-Neuronal_Astro LGR6 TNC ® Glutamatergic_L6 PARD3B CDH9
Non-Neuronal_Macrophage CD74 g  Glutamatergic_L6 PCSK5 ITPR2

Non-Neuronal_Oligo LHFPL3 ® Glutamatergic_L6 SULF1 ADAMTSL1

® Non-Neuronal_Oligo ST18 ® Glutamatergic_L6ab/5 SYT6 SERPINE2

® Non-Neuronal_Stellate DCN LAMA2 o Glutamatergic_L6ab/5 THEMIS

® Non-Neuronal_mixed DNAH17 ® Glutamatergic_ MC/PC ITGA8

SCCAF has been implemented in the Expression Atlas Galaxy pipeline

Allen Cell Types Database



http://paperpile.com/b/itrd1q/CcSRR

The Human Cell Atlas (HCA) is a global partnership of scientists
who are actively working to create an exhaustive guidebook of
the types and properties of all human cells.

EMBL



Cell type marker genes
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Central dogma of molecular biology

...gatgatgatgatgatgatgatgatgatgatgatgaggacaactctctttttccaacaagagagccaagaagccatttttttccatttgatctgtttccaatg...

* gene 2 “

DNA g
(genome) —————— L — S e~ = = = = = =
l l * Human genome
* Transcriptome
,’\\// ° Proteome
RNA ,\;\/ AY _ :
* Protein abundance is what really matters but

transcriptome
( Y ) it is difficult to assess

* The dynamic range is in 1,000,000s

* There is no straight-forward correlation
between RNA and protein abundances

* Can we predict the proteome

Proteins _
computationally?

(proteome)
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What can we say about protein expression from RNA?

Pandey: Liver ~ Uhlen: Liver Pandey: Esophagus ~ Uhlen: Esophagus

(&)
1

r= 0.587687 r= 0.425763

o
-|,
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o (6]
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-10 0 10 20

I I L 1 | o OI
o O O
o O O -
888o ' 20 0.08 Uhlen: Esophagus
0.06 Uhlen: Liver 0.06 EZ 3 -
o0t %ng ﬁ——-v——ﬁii 0.04 éé - | i “ i
- 1 1 1 ! an
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Correlation between RNA and protein abundances are not all that high
but can we predict protein abundances from RNA abundances?
Moreover, can we predict proteins that are difficult to measure diretly?
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Abstract

Mass spectrometry (MS)-based quantitative proteomics experiments typically assay a
subset of up to 60% of the ~20 000 human protein coding genes. Computational
methods for imputing the missing values using RNA expression data usually allow only
for imputations of proteins measured in at least some of the samples. In silico methods
for comprehensively estimating abundances across all proteins are still missing.

Here, a novel method is proposed using deep learning to extrapolate the observed
protein expression values in label-free MS experiments to all proteins, leveraging gene
functional annotations and RNA measurements as key predictive attributes. This method
is tested on four datasets, including human cell lines and human and mouse tissues. This
method predicts the protein expression values with average R? scores between 0.46 and
0.54, which is significantly better than predictions based on correlations using the RNA
expression data alone. Moreover, it is demonstrated that the derived models can be
“transferred” across experiments and species. For instance, the model derived from
human tissues gave a R> = 0.51 when applied to mouse tissue data. It is concluded that
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But what about predicting protein expression from RNA and
other data?

Proteomics Data Context Information RNAseq Data Deep Learning Predicted Protein Expression
amples
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Deep learning allows to make good predictions

— RNA+GO+KW == RNA+GO == RNA+KW =GO —KW - = LR --Randomised




Conclusions

* Biology is increasingly becoming a data science (like in most human activities,
there is a shift from material processing to data processing)

* Biological and health data are growing faster than Moore’s law creating
challenges and opportunities for computer and data scientists

* Growing importance of Al and ML to biological data analysis

* Personalized genomics is having an impact on healthcare now
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